3 research outputs found

    Experimental results of vector control for an asynchronous machine

    Get PDF
    The aim of this article is contributeto the advanced vector control strategy of asynchronous machines. Analyzes of experimental of indirect field-oriented control are presented. In this context, we propose vector control algorithms to provide solutions to the disadvantages of field-oriented control FOC.The results obtained from various methods of determining the parameters for asynchronous machine are compared. We calculate the various parameters and then we present the technical characteristics of each element of the asynchronous machine; finally, we implement the vector control used asbasis of comparison between the simulation under Matlab/Simulink software and experiments. The simulation and experimental tests show that the proposed controller is suitable for medium and high-performance applications

    Single-phase transformerless inverter topologies at different levels for a photovoltaic system, with proportional resonant controller

    Get PDF
    In this paper, we have studied the topologies of single-phase transformerless inverters with different levels using a proportional-integral-resonant (PIR) AC controller, and the multi-level cascade inverter topology with sinusoidal pulse with modulation (SPWM) control in an open and closed loop. To ensure that these photovoltaic inverters can inject a defined amount of reactive power into the grid according to international regulations. Therefore, precise monitoring of the mains voltage vector by a phase-locked loop (PLL) system is applied to ensure the proper functioning of this system. For inverter topologies with less than three levels, the simulation results show that the highly efficient and reliable inverter concept (HERIC) topology performance is better than that of H5 and H6. On the other hand, the performance of the topology H6 ameliorate is superior to those of H4, H5, and HERIC in currents of leakage. On the other hand, for the control of cascaded multi-level closed-loop inverters, we notice that there is an improvement in the spectra and the elimination of all frequency harmonics, close to that of the fundamental, and a reduction in the rate of harmonic current distortion

    Backstepping Control of a Switched Reluctance Motor with Inter-Turn Short-Circuit

    Get PDF
    Improving the behavior of speed control in electric vehicles is currently a major challenge for re- searchers and engineers. For this study, we chose the context of a Switched Reluctance Motor (6/4 SRM) used in a hybrid Electric Vehicle with Extended Range (EREV). Speed regulation is an essential feature on long-distance trip. Speed regulators of backstepping type are very effective in this context given the non- linear nature of switched reluctance motors. The esti- mation of non-linear quantities, flux and inductance, uses Legendre polynomials. The control strategy uses four regulators, one for speed and three for stator cur- rents. It is based on the Torque Sharing Function (TSF) and the Torque Inverse Model (TIM). Our sim- ulation consists of studying the behavior of this type of control when an Inter-Turn Short-Circuit (ITSC) fault appears on one of the phases of the 6/4 SRM. In this paper, we are interested in temporal behavior of phasic currents and we will show the interest of these quanti- ties as fault indicators allowing the real time diagnosis of this type of controller-machine
    corecore